
PRINCIPLES OF OPERATING SYSTEMS

LECTURE 34
KERNEL, TRANSFORMING I/O

REQUESTS & PERFORMANCE ISSUES

Kernel I/O Subsystem
 See A Kernel I/O Structure slide - Fig 13.6
 Scheduling

 Some I/O request ordering via per-device queue
 Some OSs try fairness

 Buffering - store data in memory while transferring between devices
 To cope with device speed mismatch - de-couples application from

device action
 To cope with device transfer size mismatch
 To maintain “copy semantics” - guarantee that the version of data

written to device from a buffer is identical to that which was there
at the time of the “write call” - even if on return of the system call,
the user modifies buffer - OS copies data to kernel buffer before
returning control to user.

 Double or “ping-pong” buffers - write in one and read from
another - decouples devices and applications
… idea can be extended to multiple buffers accesses in a circular
fashion

Sun Enterprise 6000 Device-Transfer Rates

Kernel I/O Subsystem - (continued)

 Caching - fast memory holding copy of data
 Always just a copy
 Key to performance
 How does this differ from a buffer?

 Spooling - a buffer holding output/(input too) for a device
 If device can serve only one request at a time
 Avoids queuing applications making requests.
 Data from an application is saved in a unique file associated

with the application AND the particular request. Could be
saved in files on a disk, or in memory.

 Example: Printing

 Device reservation - provides exclusive access to a device
 System calls for allocation and deallocation
 Watch out for deadlock - why?

Error Handling

 OS can recover from disk read, device unavailable,
transient write failures

 Most return an error number or code when I/O request
fails

 System error logs hold problem reports

 CRC checks - especially over network transfers of a
lot of data, for example video in real time.

Kernel Data Structures

 Kernel keeps state info for I/O components, including open file
tables, network connections, character device state
 used by device drivers in manipulating devices and data

transfer, and in for error recovery
 data that has images on the disk must be kept in synch with

disk copy.
 Many, many complex data structures to track buffers, memory

allocation, “dirty” blocks

 Some use object-oriented methods and message passing to
implement I/O
 Make data structures object oriented classes to encapsulate

the low level nature of the “device” - UNIX provides a
seamless interface such as this.

UNIX I/O Kernel Data Structure

Fig. 13.9

Refer to chapter 11 and 12 on files

Mapping I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:

How is connection made from file-name to disk controller:
 Determine device holding file
 Translate name to device representation
 Physically read data from disk into buffer
 Make data available to requesting process
 Return control to process

 See the 10 step scenario on pp. 479-481 (Silberschatz, 6th ed.)
for a clear description.

Life Cycle of An I/O Request

Data already in buffer
Ex read ahead

STREAMS (?)

 STREAM – a full-duplex communication channel between
a user-level process and a device

 A STREAM consists of:
- STREAM head interfaces with the user process
- driver end interfaces with the device
- zero or more STREAM modules between them.

 Each module contains a read queue and a write queue

 Message passing is used to communicate between
queues

The STREAMS Structure

Performance
 I/O a major factor in system performance:

 Places demands on CPU to execute device driver, kernel I/O code
 resulting in context switching
 interrupt overhead

 Data copying - loads down memory bus
 Network traffic especially stressful
 See bulleted list on page 485 (Silberschatz, 6th ed.)

 Improving Performance
See bulleted list on page 485 (Silberschatz, 6th ed.)
 Reduce number of context switches
 Reduce data copying
 Reduce interrupts by using large transfers, smart controllers, polling
 Use DMA
 Move proccessing primitives to hardware
 Balance CPU, memory, bus, and I/O performance for highest

throughput

Intercomputer Communications- omit for now

Device-Functionality Progression
Where should I/O functionality be implemented? Application
level … device hardware

Decision depends on trade-offs in the design layers:

